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Abstract—Attributes are human-annotated semantic descrip-
tions of label classes. In zero-shot learning (ZSL), they are often
used to construct a semantic embedding for knowledge transfer
from known classes to new classes. While collecting all attributes
for the new classes is criticized as expensive, a subset of these
attributes are often easy to acquire. In this paper, we extend
ZSL methods to handle this partial set of observed attributes.
We first recover the missing attributes through structured matrix
completion. We use the low-rank assumption, and leverage
properties of the attributes by extracting their rich semantic
information from external sources. The resultant optimization
problem can be efficiently solved with alternating minimization,
in which each of its subproblems has a simple closed-form
solution. The predicted attributes can then be used as semantic
embeddings in ZSL. Experimental results show that the proposed
method outperform existing methods in recovering the structured
missing matrix. Moreover, methods using our predicted attributes
in ZSL outperforms methods using either the partial set of
observed attributes or other semantic embeddings.

I. INTRODUCTION

Zero-shot learning (ZSL) recognizes objects from an unseen
class by linking them to the existing classes that one has
already learned [1, 2]. It is particularly useful in situations
where labeled samples for new classes are expensive or
difficult to obtain. Examples include neural activity encoding
[3], speech recognition [3], and image classification [4].

Additional semantic class descriptions (which will be called
semantic embeddings) are introduced in ZSL to cut down
the demand of labeled objects. The first and most widely
used semantic embedding is class-level attributes, they are
human-interpretable properties of the objects’ classes, such
as shape, color, and size [2, 4, 5]. Empirically, attributes are
desirable in terms of transferability [6], human interpretability
[2] and classification accuracy [7]. However, the collection of
attributes may require expensive expert knowledge.

Recently, the use of unsupervised semantic embeddings is
becoming popular due to the lower human effort. Typically,
they are learned from independent natural language processing
tasks. For example, Akata et al. [8] used the ornithology
hierarchy in WordNet for class embedding. Frome et al. [9]
used online text corpus to generate Word2Vec embeddings [10]
for class names. Rohrbach et al. [11] represented each class
with its co-occurrence statistics in searches with all other class-
es. Qiao et al. [12] extracted BOW word embeddings from

online articles, and then embedded each class by a predefined
vocabulary. While these unsupervised semantic embeddings do
not need expert annotations, they still require human effort in
correlating the class names with the corresponding semantic
embeddings. Moreover, these embeddings are not designed
for ZSL, and thus are expected to have inferior performance.
An example is shown in Figure 1, which compares the class
similarity matrices obtained by attributes and other unsuper-
vised semantic embeddings. As can be seen, attributes preserve
most information, while significant information can be lost by
unsupervised semantic embeddings.

Attribute based ZSL can be cost-effective if it can deal with
a partial set of (inexpensive) attributes collected for the unseen
classes. Note that although some attributes can be expensive
to collect, many attributes are related to simple properties
(e.g., colors and shapes of objects in an image) that can be
collected inexpensively, such as by crowdsourcing [14]. Yu
et al. [15] also attempted to reduce the annotation effort of
the attributes. However, they tried to predict attributes at an
instance-level with the help of class-level attributes from all
classes. In contrast, we only assume a partial set of class-level
attributes, thus the annotation effort is much lower.

In this paper, we provide a method which enables ZSL
to deal with a partial set of observed attributes. We start
by formulating the recovery of missing attributes for the
unseen classes as a structured matrix completion problem
[16]. Unlike standard matrix completion, entries in the class-
attribute matrix are not missing at random locations. By
reordering its columns and rows, the missing entries can
be arranged as a sub-matrix. On the other hand, a direct
application of structured matrix completion ignores the rich
semantic information in ZSL. To alleviate the problem, besides
using the low-rank structure as in standard/structured matrix
completion, we also take into account the semantic similarity
among columns and rows. The resultant optimization problem
can be solved by alternating minimization, in which each
optimization subproblem has a simple closed-form solution. Its
convergence is also very fast. Finally, the attributes recovered
from the partial observed attributes are used in ZSL as seman-
tic embeddings. Experiments on real-world data sets validate
the effectiveness of the proposed method in predicting missing
attributes and the efficacy of using the recovered attributes as



(a) VGG-19 (ground-truth). (b) Attribute-based [2] (0.18). (c) WordNet-based [8] (0.57). (d) Word2vec-based [13] (0.55).

Fig. 1. Class similarity matrices [4] for various semantic embeddings extracted for the CUB data set. Figure 1(a) shows the ground-truth similarity matrix S∗

based on VGG-19 features. Number in brackets shows the ‖Ŝ − S∗‖F /‖S∗‖F , where Ŝ is the similarity matrix estimated using the semantic embeddings.

semantic embeddings in ZSL.
The rest of the paper is organized as follows. Section II

briefly introduces some related work. The proposed method
is presented in Section III, which is followed by experimental
results on both structured matrix completion and ZSL in Sec-
tion IV. The last section presents some concluding remarks.

II. RELATED WORK

A. Zero-Shot Learning (ZSL)

In a classification problem, ZSL aims at learning classifiers
for the new classes without new training samples. We are given
a set of training samples Ds = {(xi, yi)}ni=1, where xi is the
input and yi ∈ Rc1 is the corresponding one-hot label vector
for c1 seen classes (i.e., yi,k = 1 if sample i belongs to class
k ∈ {1, 2, . . . , c1}, and zero otherwise). On testing, we are
given c2 unseen classes, and the goal is to predict class labels
of the test set Du = {xj}N

′

j=1.
There are four main approaches to ZSL. The first one [2]

is based on independent classifiers built for the attributes.
The attributes are assumed to be independent, which is barely
tenable. The second approach [8] projects the attributes to a
semantic space, and it then learns a function to match the
projected samples with their semantic embeddings. The third
approach [6] constructs classifiers for the unseen classes by
using weighted averages of the existing classifiers. Finally, the
last approach is based on transductive learning [17].

All these methods need semantic embeddings. However, as
stated earlier, semantic embeddings may not be complete due
to high expenses, and none of the above-mentioned methods
can handle a partial set of attributes. We aim at producing
a complete semantic embedding, which can then be used in
existing ZSL methods. In particular, we will use the ESZSL
algorithm proposed in [5] to test our predicted attributes’
quality in ZSL. ESZSL is a simple but efficient embedding-
based method. It learns a classifier W ∈ Rd×a by solving the
following optimization problem:

minW ‖Ys −X>s WS1‖2F + βλ‖W‖2F + β‖WS1‖2F
+λ‖X>s W‖2F , (1)

where Xs = [x1, . . . , xn] ∈ Rd×n, Ys = [y1, . . . , yn]> ∈
Rn×c1 , and S1 ∈ Ra×c1 contains semantic embeddings for
the c1 seen classes. As the semantic embeddings are based
on a attributes, class i’s semantic embedding is represented
by si ∈ Ra, with si,j being the association between class i
and attribute j. When other semantic embeddings are used,
e.g., word embeddings, a can be set to be the length of
the embedding. ‖W‖2F restricts the norm of classifier from
arbitrarily large. ‖WS1‖2F avoids unbalanced classes by con-
straining the norm of all projected semantic embeddings in
the feature space, and ‖X>s W‖2F constrains the norm of all
projected features on semantic space to avoid over fitting. It
can be shown that W has a simple closed-form solution:

W = (XsX
>
s + βIn)−1XsYsS

>
1 (S1S

>
1 + λIn)−1. (2)

On testing, given the semantic embeddings for c2 unseen
classes, class j’s semantic embedding is represented as Sj

2 ∈
Ra. For a test sample x, ESZSL predicts its class as s? =
arg maxj x

>WSj
2 .

B. Structured Matrix Completion

In matrix completion, the underlying matrix1 is often as-
sumed to be low-rank. Intuitively, this is because there are only
a small number of latent factors accounting for the classes’
attributes, and, similarly, a few latent factors for the attributes’
association strengths in classes. As rank minimization is NP-
hard, the rank constraint is often replaced by matrix factoriza-
tion with a fixed rank or by the nuclear norm regularizer. They
perform well both theoretically [18] and empirically [19].

Standard matrix completion assumes that the locations of
the missing entries are uniformly random. However, this may
not be the case in practice. Specially, Cai et al. [16] defines a
special setting called structured matrix completion, in which
subsets of columns/rows are observed together [16]. This
can happen in many real-world scenarios, such as multi-label
learning [20], cross-domain collaborative filtering [21], and
genomic data integration [16]. An illustration is shown in

1Here, it is the attribute-class matrix in ZSL.
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Fig. 2. Illustration of Structured Matrix Completion. We put attributes of
both seen and unseen classes into a matrix, then reorder the rows to leave
all missing entries in block S22 which is our recover target. Ra and Rc

measure semantic similarity between attributes and classes extracted from
external information sources.

Figure 2. Here, we have reordered the columns and rows so
that the missing entries are arranged in a sub-matrix. Let the
attribute-class matrix be S ∈ Ra×c, where c = c1 + c2 and
a = a1 + a2. S1 = [S11;S21] contains attribute annotations
for the seen classes, while S2 = [S12;S22] contains those for
the unseen classes. The goal is to recover S22, with all its
entries missing. In this setting, Cai et al. [16] showed that
nuclear-norm based methods can fail with high probability.

To alleviate this problem, Cai et al. [16] proposed the SMC
method. Assume that rank([S11, S12]) = rank([S>11, S

>
21]>) =

rank(S) = r. Then, rank(S11) = r. SMC recovers S22 as

S21S
†
11S12 = S21V Σ−1U>S12, (3)

where UΣV > is the SVD of S11, and † denotes the pseudo-
inverse.

Though SMC can have perfect recovery when the under-
lying matrix is exactly low-rank, it cannot incorporate prior
information or other regularizers easily.

III. PROPOSED METHOD

In this section, we first recover the values of the miss-
ing attributes using structured matrix completion, and then
use this as semantic embedding in existing ZSL methods.
Besides the low-rank assumption, we improve the structure
matrix completion performance by incorporating relationships
among the columns (classes) and rows (attributes). Intuitively,
similar classes have similar attributes annotations, and similar
attributes are likely to be annotated by similar classes. The

proposed method will be called Semantic Structured Matrix
Factorization (SSMF). When new classes emerge, we only
need to re-train SSMF but not the ZSL classifier (i.e., ESZSL).

A. Formulation

Assume that the matrix S to be reconstructed is low-rank
(with rank r). Specifically, let S be approximated as UV >,
where U = [U1;U2] ∈ Ra×r, U1 contains the latent factors
for the a1 seen attributes and U2 is for the a2 unseen attributes.
Similarly, V = [V1;V2] ∈ Rc×r, where V1 contains the latent
factors for the c1 seen classes and V2 is for the c2 unseen
classes. For i, j ∈ {1, 2}, sub-matrix Sij in Figure 2 is then
approximated as

Sij ' UiV
>
j . (4)

The similarity among the seen and unseen attributes is
contained in the matrix Ra ∈ Ra1×a2 . Similarly, similarity
among the seen and unseen classes is contained in the matrix
Rc ∈ Rc1×c2 . Such information can be easily extracted
from external sources such as an online corpus. Details will
be discussed in Section IV-A2. To recover the sub-matrix
S22 ' U2V

>
2 (which contains the unseen attributes of the

unseen classes), we assume that it can be obtained by the
transform Rc on S21. In other words,

U2V
>
2 ' S21Rc. (5)

Besides exploiting the similarity between seen and unseen
classes, one can also utilize the similarity between seen and
unseen attributes to recover S22. We then approximate S22 as

U2V
>
2 ' R>a S12. (6)

Note that both (5) and (6) are in the form of linear combina-
tion, which has been commonly used in ZSL when leveraging
information from the seen classes [6, 7]. Combining all these,
SSMF can then be formulated as the following optimization
problem:

min
U1,U2,V1,V2

L(U1, U2, V1, V2) (7)

= α(‖U1‖2F + ‖U2‖2F + ‖V1‖2F + ‖V2‖2F )

+β‖U2V
>
2 −R>a S12‖2F + λ‖U2V

>
2 − S21Rc‖2F

+‖U1V
>
1 − S11‖2F + ‖U1V

>
2 − S12‖2F

+‖U2V
>
1 − S21‖2F .

Here, ‖U1‖2F , ‖U2‖2F , ‖V1‖2F , ‖V2‖2F are standard regularizers,
the ‖U2V

>
2 −R>a S12‖2F and ‖U2V

>
2 −S21Rc‖2F terms are for

enforcing (5) and (6), respectively, while the last three terms
are from the low-rank assumption in (4).

B. Optimization by Alternating Minimization

Problem (7) is non-convex. However, by using alternating
minimization, all the subproblems become convex and have
simple closed-form solutions. Specifically, let A = U>1 U1,



B = U>2 U2, C = V >1 V1, D = V >2 V2, and I be the identity
matrix, it is easy to show that

U1 = (αI + (C +D))−1(S11V1 + S12V2), (8)
U2 = (αI + C + (β + λ)D)−1

·(S21V1 + β(R>a S12)V2 + λS21RcV2), (9)
V1 = (αI + (A+B))−1(S>11U1 + S>21U2), (10)
V2 = (αI +A+ (β + λ)B)−1

·(S>12U1 + β(R>a S12)>U2 + λ(S21Rc)
>U2).(11)

The whole procedure is shown in Algorithm 1, which is guar-
anteed to converge to a critical point of (7) [22]. Empirically,
it often converges rapidly in fewer than 10 iterations.

Algorithm 1 Semantic Structured Matrix Factorization
(SSMF).

1: Input: Observed blocks S11 ∈ Ra1×c1 ,S21 ∈ Ra2×c1 ,
S12 ∈ Ra1×c2 , similarity matrices Ra ∈ Ra2×a1 , Rc ∈
Rc1×c2 , hyper-parameters α, β, λ, rank r.

2: Output: Recovered block S∗22 ∈ Ra2×c2 .
3: Initialize: Initialize U1 ∈ Ra1×r, U2 ∈ Ra2×r, V1 ∈

Rc1×r,V2 ∈ Rc2×r with the normal distribution.
4: while not converged do
5: U∗1 = arg minU1

L(U1, U
∗
2 , V

∗
1 , V

∗
2 ) by (8);

6: U∗2 = arg minU2
L(U∗1 , U2, V

∗
1 , V

∗
2 ) by (9);

7: V ∗1 = arg minV1
L(U∗1 , U

∗
2 , V1, V

∗
2 ) by (10);

8: V ∗2 = arg minV2 L(U∗1 , U
∗
2 , V

∗
1 , V2) by (11);

9: end while
10: return S∗22 = U∗2 (V ∗2 )>.

C. Computational Complexity

Even though the closed-form solution requires matrix in-
verse, each sub-problem has low computational cost. Let
ā = max(a1, a2) and c̄ = max(c1, c2). As the number of
classes is usually larger than the number of attributes, we
assume that ā ≤ c̄. In each iteration of Algorithm 1, solving
each sub-problem consists of two steps: matrix multiplication
takes O(āc̄r) time and matrix inverse takes O(r3) time. As
the matrix is supposed to be low-rank, r is small compared
with c̄ and ā. Thus, the total per-iteration time complexity is
O(āc̄r).

D. Usage with ESZSL

With the recovered sub-matrix Ŝ22, we can use it in any
state-of-the-art ZSL method. The main aim here is only to
show that the predicted attributes serve as better semantic
embeddings than other methods (e.g., word embeddings and
WordNet). Thus, we use the aforementioned ESZSL for sim-
plicity and efficiency. Let Ŝ2 = [S12; Ŝ22] ∈ Ra×c2 . Ŝj

2 ∈ Ra

is the recovered attribute for class j. With classifier W pre-
trained by ESZSL, we predict the class of a test sample x as
s? = arg maxj x

>WŜj
2 .

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method in the contexts of structured matrix completion (Sec-
tion IV-B) and zero-shot learning (Section IV-C).

A. Setup

1) Data Sets: Experiments are performed on three image
data sets commonly used in ZSL (Table I): (i) Animals with
Attributes (AwA) [2], (ii) CUB-200-2011 Birds (CUB) [23]
and (iii) SUN attribute (SUN) [24]. While AwA and CUB
have attributes annotated per class, SUN only has annotations
per instances. Thus, as in [4], we use the average attribute
annotation within each class to construct the class-attribute
matrix for SUN.

TABLE I
SUMMARY OF THE ZSL DATA SETS USED.

#classes
seen unseen total #attributes #images

AwA 40 10 50 85 30,475
CUB 150 50 200 312 11,788
SUN - - 717 102 14,340

2) Attribute and Class Similarity Matrices: The class sim-
ilarity matrix Rc ∈ Rc1×c2 and attribute similarity matrix
Ra ∈ Ra1×a2 are constructed through three steps. We first
extract word embeddings for the names of classes and at-
tributes, then compute the semantic similarity between the
word embeddings, and finally put the computed values into
the similarity matrices.

Specifically, the construction of Rc is as follows (Ra is
constructed in a similar manner). First, we extract word
embeddings corresponding to the class names from the English
Wikipedia2. The SkipGram version of Word2Vec [10] (with
negative sampling and a window size of 20) is used to
obtain 400-dimensional word embedding vectors. Next, we
define the similarity measure between word embeddings. Let
k = log(n) + 1, and n be the number of words. The semantic
similarity between class i’s word embedding xi and class j’s
word embedding xj is defined as

sim(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (12)

where σ is the mean distance of the vector to its k-th nearest
neighbor. Finally, the semantic similarity of an unseen class i
with respect to all the seen classes are stored in Rci ∈ Rc1

(i.e., Rci,j = sim(xi, xj), where j is a seen class). These
vectors are `1-normalized and become the columns of Rc.

3) Splitting into Seen and Unseen Classes/Attributes:
AwA and CUB have standard splits into seen and unseen
classes [2, 8], while SUN does not. Although using the
standard split allows easier comparison with existing work,
the performance of ZSL methods can vary significantly with
different class/attribute splits [6]. Hence, we also experiment

2We download the entire dump from https://dumps.wikimedia.org/enwiki/
20160407/enwiki-20160407-pages-articles.xml.bz2



with random class splitting with varying ratios for the seen
classes. Similarly, the attributes are also randomly split.

TABLE II
RRE RESULTS ON AwA AND CUB, USING STANDARD CLASS SPLIT AND

RANDOM ATTRIBUTE SPLIT. THE BEST AND COMPARABLE RESULTS
(ACCORDING TO THE PAIRWISE T-TEST WITH 95% CONFIDENCE) ARE IN

BOLD. RECALL THAT SUN DO NOT HAVE A STANDARD CLASS SPLIT, AND
SO ITS RESULTS ARE NOT REPORTED HERE.

ratio of seen attributes
0.25 0.50 0.75

AwA SMC 0.81±0.09 0.69±0.15 0.65±0.13
GRALS 0.73±0.02 0.62±0.01 0.63±0.03
1NN-A 0.97±0.04 0.95±0.04 0.96±0.05
KNN-A 0.76±0.01 0.75±0.02 0.75±0.03
1NN-C 0.63±0.01 0.63±0.02 0.65±0.04
KNN-C 0.64±0.02 0.64±0.02 0.65±0.04
SSMF 0.53±0.04 0.45±0.02 0.45±0.04

CUB SMC 0.62±0.11 0.50±0.03 0.44±0.06
GRALS 0.64±0.01 0.64±0.01 0.64±0.03
1NN-A 1.22±0.08 1.20±0.14 1.22±0.17
KNN-A 0.87±0.01 0.87±0.00 0.86±0.01
1NN-C 0.68±0.01 0.69±0.02 0.69±0.04
KNN-C 0.62±0.01 0.62±0.01 0.62±0.03
SSMF 0.44±0.02 0.37±0.02 0.33±0.02

TABLE III
RRE RESULTS ON AwA, USING RANDOM CLASS AND ATTRIBUTE SPLITS.

ratio of ratio of seen attributes
seen classes 0.25 0.50 0.75

0.25 SMC 0.76±0.12 0.66±0.08 0.67±0.09
GRALS 0.80±0.06 0.70±0.02 0.69±0.04
1NN-A 1.08±0.05 1.09±0.05 1.07±0.04
KNN-A 0.79±0.02 0.79±0.03 0.78±0.02
1NN-C 0.78±0.04 0.77±0.05 0.76±0.08
KNN-C 0.68±0.03 0.69±0.03 0.68±0.05
SSMF 0.62±0.03 0.60±0.05 0.57±0.07

0.50 SMC 0.77±0.13 0.64±0.06 0.63±0.09
GRALS 0.75±0.03 0.66±0.04 0.64±0.03
1NN-A 1.08±0.04 1.08±0.04 1.05±0.03
KNN-A 0.79±0.01 0.79±0.02 0.77±0.02
1NN-C 0.68±0.02 0.68±0.03 0.65±0.05
KNN-C 0.65±0.02 0.66±0.03 0.65±0.03
SSMF 0.56±0.04 0.53±0.03 0.50±0.05

0.75 SMC 0.69±0.16 0.58±0.06 0.55±0.08
GRALS 0.72±0.04 0.63±0.05 0.63±0.06
1NN-A 1.05±0.03 1.05±0.04 1.04±0.03
KNN-A 0.79±0.01 0.78±0.02 0.77±0.02
1NN-C 0.65±0.03 0.65±0.03 0.62±0.07
KNN-C 0.64±0.04 0.65±0.04 0.64±0.04
SSMF 0.51±0.03 0.51±0.05 0.47±0.03

B. Structured Matrix Completion

The proposed SSMF is compared with (i) SMC [16]; and (ii)
GRALS [19], which performs matrix completion with graph
Laplacian regularization. As further baselines, the following
nearest-neighbor-based methods are compared:

1) 1NN-A: Consider class i with an unseen attribute j.
1NN-A first finds the seen attribute a that is closest3

to j. The value of attribute a on class i is then used to
fill in.

3Each seen attribute is viewed as a vector in Rc1 , and the distance defined
in (12) is used for finding the closest attribute.

TABLE IV
RRE RESULTS ON CUB, USING RANDOM CLASS AND ATTRIBUTE SPLITS.

ratio of ratio of seen attributes
seen classes 0.25 0.50 0.75

0.25 SMC 0.57±0.04 0.56±0.05 0.52±0.04
GRALS 0.67±0.01 0.67±0.03 0.67±0.02
1NN-A 1.19±0.07 1.20±0.07 1.14±0.06
KNN-A 0.88±0.00 0.88±0.01 0.88±0.01
1NN-C 0.71±0.02 0.72±0.04 0.75±0.03
KNN-C 0.64±0.01 0.64±0.04 0.66±0.01
SSMF 0.51±0.01 0.48±0.03 0.45±0.01

0.50 SMC 0.57±0.06 0.52±0.06 0.46±0.03
GRALS 0.64±0.01 0.65±0.03 0.66±0.02
1NN-A 1.19±0.06 1.20±0.07 1.14±0.05
KNN-A 0.88±0.00 0.88±0.02 0.88±0.01
1NN-C 0.68±0.02 0.69±0.03 0.71±0.02
KNN-C 0.63±0.01 0.64±0.03 0.65±0.01
SSMF 0.47±0.02 0.41±0.02 0.38±0.01

0.75 SMC 0.63±0.06 0.57±0.09 0.46±0.03
GRALS 0.63±0.01 0.64±0.03 0.65±0.02
1NN-A 1.19±0.05 1.20±0.07 1.14±0.06
KNN-A 0.88±0.01 0.88±0.02 0.88±0.01
1NN-C 0.68±0.01 0.69±0.03 0.71±0.02
KNN-C 0.62±0.01 0.63±0.03 0.64±0.02
SSMF 0.44±0.04 0.39±0.02 0.34±0.00

TABLE V
RRE RESULTS ON SUN, USING RANDOM CLASS AND ATTRIBUTE SPLITS.

ratio of ratio of seen attributes
seen classes 0.25 0.50 0.75

0.25 SMC 0.68±0.14 0.57±0.05 0.49±0.08
GRALS 0.64±0.07 0.55±0.05 0.49±0.03
1NN-A 1.14±0.11 1.17±0.12 1.07±0.12
KNN-A 0.89±0.01 0.89±0.03 0.88±0.02
1NN-C 0.76±0.03 0.76±0.04 0.75±0.11
KNN-C 1.23±0.38 1.21±0.36 1.17±0.33
SSMF 0.57±0.05 0.46±0.02 0.41±0.05

0.50 SMC 0.63±0.08 0.55±0.06 0.48±0.05
GRALS 0.59±0.06 0.54±0.02 0.48±0.03
1NN-A 1.13±0.11 1.17±0.12 1.07±0.11
KNN-A 0.89±0.01 0.89±0.03 0.88±0.02
1NN-C 0.74±0.03 0.74±0.03 0.73±0.09
KNN-C 1.91±1.46 1.80±1.30 1.68±1.16
SSMF 0.56±0.02 0.45±0.03 0.40±0.05

0.75 SMC 0.71±0.06 0.64±0.12 0.54±0.13
GRALS 0.58±0.02 0.50±0.02 0.47±0.07
1NN-A 1.14±0.12 1.18±0.13 1.08±0.13
KNN-A 0.89±0.01 0.89±0.03 0.88±0.02
1NN-C 0.74±0.02 0.74±0.03 0.73±0.08
KNN-C 0.84±0.20 0.83±0.20 0.80±0.20
SSMF 0.54±0.03 0.45±0.02 0.39±0.05

2) KNN-A: This is similar to 1NN-A, except that we use
a linear combination of all the seen attribute values for
class i. The combination weight for each seen attribute
is proportional to its similarity with attribute j in (12).

3) 1NN-C: This is similar to 1NN-A, but is based on
classes instead of attributes. Specifically, 1NN-C first
finds the seen class C that is closest4 to i. The value of
attribute j on class C is then used to fill in.

4) KNN-C: Analogous to 1NN-C, this is similar to KNN-A,
but is based on the class embedding vectors instead of
the attribute embedding vectors.

4Each seen class is viewed as a vector in Ra1 .



(a) AwA (using VGG-19 features). (b) AwA (using GOOG features). (c) CUB (using VGG-19 features). (d) CUB (using GOOG features).

Fig. 3. Classification accuracies on unseen classes for the AwA and CUB data sets. The ±1 standard deviation are indicated by the vertical bars. Note
Attr-FULL, WordNet and Word2Vec are not affected by attributes splits.

SMC, 1NN-A, KNN-A, 1NN-C, and KNN-C do not have
hyperparameters to tune. For GRALS and SSMF, hyperparam-
eter tuning is based on the 5-fold cross-validation procedure
discussed in [16]. For performance evaluation, we use the
relative reconstruction error RRE = ‖Ŝ22 − S22‖F /‖S22‖F
as in [16], where Ŝ22 and S22 are the recovered and true sub-
matrices, respectively. To reduce statistical variability, results
are averaged over 20 repetitions. Results based on the standard
class splits (for AwA and CUB) are shown in Table II, while
those based on random class splits are shown in Tables III
(for AwA), IV (for CUB), and V (for SUN). With more
seen classes and attributes, performance becomes better for
SMC, SSMF and GARLS, but not for the nearest-neighbor-
based methods. As can be seen, SSMF outperforms the others,
showing the benefits of exploiting both the low-rank structure
and semantic similarity. Neither considering semantic similar-
ity only (i.e., nearest-neighbor-based methods) nor leveraging
low-rank structure only (i.e., SMC) is satisfactory. Though
GRALS also considers both the low-rank structure and pairwise
similarity (by the graph Laplacian on all attributes and classes),
it assumes that the entries in the class-attribute matrix are
missing at random uniformly. Thus, it does not perform as
well in our structured matrix completion setting.

C. Zero-Shot Learning

In this section, we use the recovered attribute-class an-
notation matrix as input semantic embedding to the ESZSL
algorithm in [5]. We use the popular VGG-19 [25] and GOOG
[26] features,5 which have been commonly used for zero-
shot learning on image data sets [6, 7, 12, 13]. The VGG-19
features are 4096-dimensional vectors extracted from the last
fully connected hidden layer of the 19-layer VGG net. The
GOOG features are 1024-dimensional vectors extracted from
the last pooling layer of the GoogLeNet. Both feature sets are
pre-trained on the ILSVRC2014 data set.

Besides using the learned attribute-class matrix for semantic
embedding, two other semantic embeddings that do not require
the presence of class attributes are compared:

5The VGG-19 features are from [4], while the GOOG features (only
available on the AwA and CUB data sets) are from [13].

(i) Word2Vec: As in [7, 13], the word embeddings are
learned on Wikipedia.

(ii) WordNet: As in [7, 11, 13], the embeddings are ex-
tracted from the WordNet hierarchy. Each class i is
represented by a vector hi, such that hi,k = 1 if k is
an ancestor of i or i = k, and 0 otherwise. We only
extract WordNet embeddings for AwA and CUB, as most
of SUN’s class names are compound words that do not
exist in WordNet’s vocabulary.

To further illustrate the quality of the learned class-attribute
matrix, we also compare with (i) Attr-FULL, which contains
ground-truth values of the whole attribute-class matrix. This
serves as an upper bound on the ZSL performance; (ii)
Attr-ZERO, which simply sets the unseen attribute values
to zero.

As SSMF clearly outperforms the other methods in Sec-
tion IV-B, we only experiment with SSMF in this ZSL setting.
Hyperparameters are tuned using 5-fold cross-validation as
in Section IV-B. To reduce statistical variability, results are
averaged over 20 repetitions.

Figure 3 shows the classification accuracies on the unseen
classes for the AwA and CUB data sets (with the standard class
split), while Figure 4 shows the classification accuracies for the
SUN data set (with random class splits). As shown in Figure 3,
the VGG-19 features perform slightly better than GOOG. We
speculate that this is because VGG-19 is higher-dimensional,
and thus can capture more information from the images. The
use of class attribute information leads to significantly better
ZSL performance over those that do not (Word2Vec and
WordNet). This also agrees with the observations in [6, 7].
Moreover, as expected, accuracy improves with the increasing
number of seen classes and seen attributes.

As the similarity values in the attribute-class matrix are
in [0, 1], Attr-ZERO cannot discriminate missing attributes
from dissimilar ones, and thus its performance is inferior to
SSMF. However, when a high proportion of the attributes
become seen (e.g., 75%), its performance on AwA can be
quite competitive. This is because the ratio of seen classes on
this data set is high (80%). Hence, when the number of seen
attributes is also large, most of the information has already



(a) SUN with 25% seen classes. (b) SUN with 50% seen classes. (c) SUN with 75% seen classes.

Fig. 4. Classification accuracies on unseen classes for the SUN data set (using the VGG-19 features). With classes split randomly, all semantic embeddings
are influenced. Thus all results are measured with standard deviation.

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART THAT DO NOT USE

ATTRIBUTE (ON AwA AND CUB WITH THE STANDARD SPLIT).

feature semantic information AwA CUB
Rohrbach[11] Low level WordNet 17.8 -

Wikipedia 19.7 -
Yahoo Web 19.5 -

Yahoo Image 23.6 -
Flickr Image 22.9 -

ALE[8] Fisher Vector WordNet 39.0 12.1
SJE[7] GOOG Word2Vec 51.2 28.4

GloVe 58.8 24.2
Bag of Words 44.9 22.1

WordNet 51.2 20.6
LatEm[13] GOOG Word2Vec 61.1 31.8

GloVe 62.9 32.5
WordNet 57.5 24.2

SynC[6] GOOG Word2Vec 57.5 -
Qiao[12] VGG-19 Bag of Words 66.5 29.0

SSMF+ESZSL VGG-19 25% attributes 67.5 43.0
50% attributes 74.1 51.4
75% attributes 78.8 54.3

Word2Vec 51.8 34.8
WordNet 49.2 27.5

GOOG 25% attributes 65.7 39.5
50% attributes 71.9 47.4
75% attributes 76.4 49.8

Word2Vec 59.9 30.8
WordNet 52.8 22.2

been captured and so even discarding the unseen attributes in
the unseen classes can still have good performance. However,
when the number of seen classes is much smaller (as in
Figures 4(a) and 4(b)), the performance difference between
Attr-ZERO and SSMF can be substantial. In practical sit-
uations, in order to reduce human annotation effort, many
attributes will be missing. Hence, the proposed method can
be significantly better.

Finally, Table VI summarizes the state-of-the-art ZSL per-
formance using unsupervised semantic embeddings on the
AwA and CUB data sets (using the standard class split). As can
be seen, the use of partial attribute information outperforms
all of them.

V. CONCLUSION

In this paper, we extend zero-shot learning with a partial
set of observed attributes. Instead of annotating the missing
attributes, which can be expensive, we recover them by for-
mulating as a structured matrix completion problem. Semantic
similarity between rows and columns is also incorporated.
The resultant optimization problem can be efficiently solved
by alternating minimization. Experimental results show that
the proposed method performs well in predicting the missing
attributes. On plugging the predicted attributes into a standard
zero-shot learning algorithm, the performance is better than
using either the partially observed set of attributes or other
semantic embeddings.
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