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ABSTRACT
Online healthcare services can provide unlimited and in-time med-
ical information to users, which promotes social goods and breaks
the barriers of locations. However, understanding the user intents
behind the medical related queries is a challenging problem. Medi-
cal search queries are usually short and noisy, lack strict syntactic
structure, and also require professional background to understand
the medical terms. The medical intents are fine-grained, making
them hard to recognize. In addition, many intents only have a few
labeled data. To handle these problems, we propose a few-shot
learning method for medical search query intent recognition called
MEDIC. We extract co-click queries from user search logs as weak
supervision to compensate for the lack of labeled data. We also
design a new query encoder which learns to represent queries
as a combination of semantic knowledge recorded in an external
medical knowledge graph, syntactic knowledge which marks the
grammatical role of each word in the query, and generic knowledge
which is captured by language models pretrained from large-scale
text corpus. Experimental results on a real medical search query
intent recognition dataset validate the effectiveness of MEDIC.
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• Information systems→Query representation;Query intent;
Query log analysis; • Computing methodologies → Supervised
learning by classification.
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1 INTRODUCTION
Online healthcare services allow users to easily reach medical and
healthcare related knowledge via web search. They break the limita-
tion of time and space and also reduce the medical consultation cost.
Besides, users can freely express privacy issues such as venereal
disease without feeling embarrassed. It is reported that around 7
percent of Google’s daily searches are health-related [29], and more
than 200 million Chinese search for medical knowledge on Baidu
every day [45]. To understand medical queries properly, it is crucial
to recognize the search intent such that satisfactory information
and appropriate advertisements can be suggested [39].

Table 1: Examples of medical search queries. The blue italic
words are entities existing in the medical KG.

Medical Search Query Intent Label

I have rhinitis. Can I drink coffee? Drug-Food

Stuffy nose which drug can I use. Disease

Can I take Astelin and Aspirin together? Drug-Drug

Have a stomachache after taking Aspirin. Side Effect

Does running nose mean COVID-19? Disease

Medical search query intent recognition faces two challenges:

Challenge 1. Medical search queries are particularly hard to
understand. As search queries are provided by users, they usually
consist of a few words which lack context information, may
not follow strict syntactic structure of a written language and
even contain typos [36, 39]. This is because users with different
backgrounds can express the same intent by different words and
expressions. Moreover, medical search queries ask about pro-
fessional medical terms such as rhinitis, Astelin and Aspirin in
Table 1. To bring in more semantic knowledge, several works [7, 15]
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put efforts on query conceptualization which learns to map search
queries to concepts existing in external knowledge bases.

Challenge 2. Intent labels designed for medical search query
have to be fine-grained to return precise information to the
users [42]. Hence, many intents only contain a few labeled queries
as shown in Figure 1. This is different from the general search query
intent recognition problem, whose intents are usually grouped into
informational, navigational, and transactional [4, 39, 43]. Thus, sim-
ple keyword matching or entity linking with respect to a medical
knowledge graph (KG) [18] cannot recognize the intent of medical
search queries. For examples, the first and the second queries in
Table 1 mention similar diseases, but they have different search
intents. Likewise, the third and the fourth queries both contain
Aspirin, while their intents are quite different. Connecting Aspirin
to entity type drug is not enough to recognize the intent. Moreover,
due to the high requirement on domain knowledge, it is hard and
expensive to hire appropriate annotators to label the data.

Counts

Healthcare
No Effect

Form
Drug-Action

Company
Ingredient
Purchase

Drug-Food
Target Group

Disease
Side Effect
Drug-Drug

Effect
Guide

53

68

81

108

142

242

573

587

883

1051

1650

1656

1906

2593

Figure 1: Intent distribution of our dataset.

Existing methods mainly work towards general query intent
recognition [14, 43], and require large-scale labeled samples to ob-
tain decent performance [27, 42]. How to train a model which can
generalize to tasks with a limited number of labeled samples for
medical search query intent recognition tasks is still an unresolved
problem. To fill in this blank, we propose a few-shot learning ap-
proach forMEDical search query Intent Classification (MEDIC)
which can leverage external semantic and syntactic knowledge, and
discover co-click queries as weak supervision to compensate for
the lack of enough labeled data. Specifically, our contribution can
be summarized as follows:
• We propose a query encoder which simultaneously encodes exter-
nal semantic knowledge from a medical KG, syntactic knowledge
from Part-of-speech (POS) tags, and generic knowledge captured
from large corpus. In particular, we leverage an external med-
ical KG which contains professional medical knowledge, and
construct a POS tag graph based on data-specific co-occurrence
statistics to exploit syntactic knowledge. As the sets of entity
types and POS tags are limited and can be easily covered by
training data, the proposed model can be freely applied for new
samples and new classes.

• Based on the insight that two queries which lead different users to
click the same suggested URLs have high potential to express the
same intent, we leverage co-click queries as weak supervision to

augment the few labeled data. We specially design a class-aware
contrastive loss to encourage the original labeled queries and
co-click queries to obtain similar query embeddings, which can
better exploit co-click queries as found in our empirical study.

• Extensive experiments are performed on a real medical search
query intent recognition dataset collected from Baidu1, which is
one of the largest commercial search engine in the world. Results
show that MEDIC consistently outperforms existing methods.
The rest of the paper is organized as follows. Section 2 introduces

a real medical search query intent recognition dataset used in the
paper. Section 4 presents the proposed method. Section 5 shows
the experimental results. The last section concludes the paper with
some future directions.

2 DATASET DESCRIPTION
The statistics of dataset used in this paper is in Table 2. All these
data sources are in Chinese.

Table 2: Statistics of the dataset used in this paper.

Class
Number of classes 14
Number of training classes 9
Number of testing classes 5

Query Number of queries 11593
Number of co-click queries 165063

Medical KG Number of medical entities 41676
Number of medical entity types 20

POS Tag Number of POS tag types 57
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Figure 2: Query length distribution of our dataset.

Query Collection. We collect search queries from Baidu, one of
the largest commercial search engines in the world, from December
2020 to March 2021. As we focus on drug-oriented intents, queries
which do not contain any medical entity need to be dropped. To
achieve this, we conduct entity linking of these queries with respect
to a drug-oriented medical KG provided by Health IT Accelerator2.
This KG integrates various data sources including the drug inserts,
catalog of medicines covered by national medical insurance system
1https://www.baidu.com
2https://hita.omaha.org.cn
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and Chinese Pharmacopoeia Commission. Afterwards, we record
the entities and their corresponding entity types found in each
query. We drop queries with length less than 5 as they carry too
limited information.

Query Annotation. According to the search intent, each query
is categorized into one of the 14 intents including (i) inquiries
about drug itself: company, ingredient, purchase, and form; (ii)
inquiries about the purpose of drug: disease and healthcare; (iii)
inquiries about the usage of drug: guide and target group; (iv)
inquires about the effect of drug: (normal) effect, side effect and no
effect at all; and (v) inquiries about interactions with drug: drug-
drug, drug-food, and drug-action. Those ambiguous queries which
are hard to recognize their intents are marked as NA. We randomly
sample 15000 queries and pay three well-educated annotators with
bachelors’ degrees to label the queries. The annotators first took a
3-hour tutorial provided by medical professionals. The annotated
queries went through four rounds of quality assurance testing in
five weeks. Only queries with at least two identical intent labels
are kept. For these labeled queries, we collect co-click queries from
user search logs during the same period. In addition, we assign
each word a POS tag after tokenization via Jieba3. We present some
labeled queries in Table 1, which are translated into English for
ease of understanding. Figure 2 shows the query length distribution
and Figure 1 shows the medical intent distribution of the queries.

Ethical Issue. No information about users who issued the queries
is provided: the dataset contains labeled queries and their co-click
queries, entities with their types and POS tags, which all are non-
personally identifiable information.

3 RELATEDWORKS
Search query intent recognition problem assigns predefined intent
labels to search queries [32]. It is a typical type of text classification
problem [24, 36]. Thus, we first provide a short review on text
classification method. We then briefly review few-shot learning,
which handles new tasks with a few labeled samples. Specially, we
highlight the differences between existing works with our MEDIC.

3.1 Text Classification
Text classification is a fundamental task in natural language pro-
cessing, which classifies documents into predefined taxonomy [24].
As deep neural networks such as convolutional neural networks
(CNN) [20] and long short-term memory (LSTM) [26] can directly
obtain expressive representations from raw texts in an end-to-end
manner, many deep models are developed for text classification. Re-
cently, graph neural networks (GNNs) [22] obtain state-of-the-art
performance [37]. They can be divided into two types. The first type
conducts transductive learning on a heterogeneous corpus-level
graph which takes all text and word of the corpus as nodes and.
It allows unlabeled texts to be labeled by propagating label infor-
mation from neighboring texts via semi-supervised learning [41].
Another type models each document as a graph of word nodes and
classifies the whole graph [10, 17], which allows inductive learning
for new documents. However, this type of GNNs cannot effectively
handle the case where only a few documents are labeled. Although
3https://github.com/fxsjy/jieba

we design our MEDIC upon GNN, we do not model the relationship
between words nor documents. Instead, we construct two graphs
to model the relationship among KG entity types and POS tags
respectively, which can bring in external domain knowledge and
syntactic information to better understand the medical queries.

Apart from models specially designed for text classification, pre-
trained language models (PLMs) have demonstrated their ability
of encoding universal knowledge, which can be taken as good
starting point for downstream tasks. Examples include BERT [9]
and GPT-3 [5]. A recent work infuses biomedical KG into BERT and
evaluates on various English downstream tasks [27]. A direct way
of leveraging these PLMs is to fine-tune them by taking gradient
descent with respect to the objective of downstream tasks. However,
when only a few labeled samples are provided, fine-tuning the PLMs
has a high risk of overfitting. In our work, we also use a PLM which
captures generic knowledge. But to appropriately solve the few-
shot medical search query intent recognition problem, we have
to incorporate external domain knowledge and manage to fully
exploit provided data without overfitting.

3.2 Few-shot Learning
Few-shot learning (FSL) targets at generalizing to new tasks with
a few labeled samples [38], which has been applied to text clas-
sification task. Several approaches conduct data augmentation to
directly compensate for the lack of labeled samples. Examples in-
clude modifying original labeled samples with simple operations
[40], selecting potential samples from unlabeled data [28] or syn-
thesizing new samples in the feature space [35]. Another line of
methods learns to embed samples into a space where samples can
be easily discriminated [2]. Recently, there emerge few-shot learn-
ing methods developed for query intent detection in goal-oriented
dialogue systems [12, 44], which is often jointly optimized with slot
filling. In contrast, we target at recognizing the intent of medical
queries drawn from online search engine. In addition, we augment
the supervised information by exploiting co-click queries readily
existing user search logs, which is able to bring in diverse semantic
information.

4 METHODOLOGY
We now present the proposed MEDIC, whose high-level illustration
is plotted in Figure 3. In the sequel, we first provide the formal
problem formulation of few-shotmedical search query classification
tasks (Section 4.1). Then, we introduce the two key components of
MEDIC: co-click query extractor which extracts co-click queries for
each labeled query (Section 4.2), and query encoder which outputs
query embeddings for queries (Section 4.3). Finally, we describe the
training and inference procedure (Section 4.4).

4.1 Problem Formulation
In this paper, we denote scalars by lowercase, vectors by lowercase
boldface, matrices by uppercase boldface, and sets by uppercase
calligraphic font. For a vector x, [x]𝑖 denotes the 𝑖th element of x.
For a matrix X, [X]𝑖 𝑗 denotes the (𝑖, 𝑗)th entry of X.

We target at learning a predictor which generalize to recognize
new fine-grained medical intents given a few exemplar labeled
queries. Following the classic training protocol to handle tasks with
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Figure 3: A high-level illustration of the proposed MEDIC. We consider a 2-way 2-shot task T𝑡 for clarity. For each query (x𝑖 , 𝑦𝑖 )
in the support set S𝑡 , we use the co-click query extractor (Figure 3 (b)) to extract its co-click query which leads the users to
click the same suggested URL returned by the search engine and is highly possible to express the same intent and can augment
the supervised information. Then, we feed all queries in support set S𝑡 , class-wise co-click query sets {C𝑐𝑡 }2

𝑐=1 and query set Q𝑡
to the same query encoder to obtain their query embeddings. In particular, our query encoder (Figure 3 (a)) simultaneously
encodes semantic knowledge provided by a medical KG schema G𝑠 , syntactic knowledge recorded in the POS tag graph G𝑔,
and the generic knowledge extracted from a large corpus into the query embeddings. MEDIC is optimized in an end-to-end
manner with respect to the classification loss ℓclass (Q𝑡 ) evaluated on the query set and the class-aware contrastive loss ℓclass (S𝑡 )
calculated using S𝑡 and {C𝑐𝑡 }.

a few labeled samples [2, 3, 12, 13], we employ episodic training to
learn the predictor from a set of few-shot tasks {T𝑡 }𝑁𝑡

𝑡=1. Each T𝑡 is
formulated as a 𝑁 -way 𝐾-shot task, where a subset of 𝑁 classes
is randomly sampled from 𝑁train training classes and 𝐾 labeled
samples (x𝑖 , 𝑦𝑖 ) are then sampled per class. In our task, each x𝑖
is a medical search query and 𝑦𝑖 is its medical intent label. These
𝑁 ·𝐾 labeled samples form the support set S𝑡 = {(x𝑖 , 𝑦𝑖 )}𝑁 ·𝐾

𝑖=1 . The
predictor will learn to predict the labels of samples in the query set
Q𝑡 = {(x𝑗 , 𝑦 𝑗 )} given the few-shot S𝑡 . By learning from a set of
different tasks, the model is expected to generalize to a new task
𝑇 given a few labeled queries from 𝑁test classes that are unseen
during training.

Although this formulation takes the same form of few-shot text
classification problem [2], the problem considered here is actually
much harder: (i) a medical search query x𝑖 is usually noisy, short
and requires professional medical knowledge; and (ii) its intent 𝑦𝑖
is fine-grained which requires a deep understanding of x𝑖 .

4.2 Co-click Query Extractor
When the number of labeled queries per class is limited, a natural
consideration is to augment the supervised information. A straight-
forward way to conduct data augmentation via transforming origi-
nal queries. However, due to the complicated syntactic structures,
generating texts with target labels is much harder than images
[8, 16]. Simple operations such as synonym replacement, random
insertion/swap/deletion [40] may lead to performance gain, but
they can easily change the original semantic meaning [35]. While

it is expensive to consider conditional generation and round-trip
translation to augment online search queries. Therefore, we in-
stead turn to exploit co-click search queries readily recorded in
user search logs and extract them via the proposed co-click query
extractor.

Co-click search queries [1, 25, 43] of a search query refer to those
search queries which lead the users to click the same suggested
URL returned by the search engine. In Figure 3 (b), Query 1, Query
2 and Query 3 lead the users to click the URL 1. Thus, Query 2 and
Query 3 are both co-click queries of Query 1. As the user intent
lies under the click histories, if two users click the same URL, their
search queries are very likely to express the same intent. In this
way, we leverage the intelligence of users to detect those candidate
queries which possibly express the same intent. Besides, users with
different background can naturally express the same intent quite
differently, such as using different words and tenses, describing
in a formal or informal way. Therefore, leveraging these co-click
search queries can bring in more diverse semantic information. For
each x𝑖 ∈ S𝑡 , we extract one co-click search query c𝑖 . Then, we
collectively put 𝐾 co-click queries of class 𝑐 into the class-wise
co-click query set:

C𝑐𝑡 = {c𝑖 |c𝑖 is a co-click query of x𝑖 and 𝑦𝑖 = 𝑐}. (1)

Intuitively, consider x𝑖 , x𝑚 ∈ S𝑡 , assume c𝑖 is the co-click queries
of x𝑖 and and c𝑚 is the co-click queries of x𝑚 . If the users do
not click URLs at random, it is highly possible that x𝑖 , x𝑚, c𝑖 , c𝑚
describe the same intent. Therefore, we take C𝑐𝑡 as a whole without
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discriminating the exact co-click relationship between x𝑖 ∈ S𝑡 and
c𝑖 ∈ C𝑐𝑡 .

4.3 Query Encoder
Provided with S𝑡 , {C𝑐𝑡 } and Q𝑡 , we describe how to obtain query
embeddings via our specially designed query encoder. Specially,
the resultant query embeddings simultaneously encode (i) semantic
knowledge recorded in an external drug-oriented medical KG, (ii)
syntactic knowledge which marks the grammatical role for each
word in the query, and (iii) generic knowledge which is captured
by language models pretrained from large-scale text corpus. Next,
we first introduce how to encode the above-mentioned knowledge
into fix-sized embeddings respectively, then show how to combine
them into the query embeddings.

4.3.1 Semantic Knowledge Encoding. Medical search queries lack
context information and usually contains professional medical en-
tities, which makes them hard to understand. Therefore, we turn
to external medical KGs to leverage their rich medical knowledge.
As shown in Table 1, simply entity linking or keyword matching
cannot reveal the medical intents. Queries containing the same
medical entity can express quite different intents. Moreover, we
find most queries only contain one recorded entity in our dataset.
A single noun cannot reveal the intent. Nevertheless, these medical
entities take an important semantic role in the queries, and also
are the hardest to understand. Therefore, we use the drug-oriented
medical KG introduced in Section 2. It contains comprehensive
information for medical entities and relations to help alleviate the
necessity of involving a human expert. However, we cannot directly
use the medical KG. Except that the medical KG is large to oper-
ate, the resultant model cannot handle new entities and requires
retraining. While in practice, it is hard to presume that training
data and testing data contain the same set of entities. Inspired by
[31] which founds the information of entity mention comes mainly
from its type information, we instead use the medical KG schema.
A schema is a generalized graph (or meta-level graph) of entity
types connected by relation types [11]. The schema used in this
paper is plotted in Figure 3 (c), which is provided along with the
medical KG.

In order to leverage the semantic knowledge of the medical KG
schema, we first learn to represent the relation types. Denote the
medical KG schema as G𝑠 = {V𝑠 ,A𝑠 } whereV𝑠 is a set of entity
types and A𝑠 is the adjacency matrix. We initialize the node feature
h̄𝑠
𝑖
for 𝑣𝑠

𝑖
∈ V𝑠 as a one-hot vector. Formally, the (𝑖, 𝑗)th entry

[A𝑠 ]𝑖 𝑗 of A𝑠 is set as

[A𝑠 ]𝑖 𝑗 =
{

1 if 𝑣𝑠
𝑖
and 𝑣𝑠

𝑗
are connected in G𝑠

0 otherwise
.

In our G𝑠 , the connection between 𝑣𝑠
𝑖
and 𝑣𝑠

𝑗
means the correspond-

ing two entity types are associated, such as disease and cause. While
those disconnected are less likely to be semantically related, such
as form and department. Let H̄𝑠 denote the initialized feature matrix
for all nodes in V𝑠 , where the 𝑖th row of H̄𝑠 is h̄𝑠

𝑖
. We then use

a 2-layer graph convolutional network (GCN) [22] to obtain the
entity type embedding matrix H𝑠 of G𝑠 :

H𝑠 = Ã𝑠 · ReLU(Ã𝑠 H̄𝑠W𝑠
1)W

𝑠
2, (2)

where [ReLU(x)]𝑖 = max( [x]𝑖 , 0), Ã𝑠 = D𝑠−
1
2 (I + A𝑠 )D𝑠−

1
2 with

[D𝑠 ]𝑖𝑖 =
∑
𝑗 [A𝑠 ]𝑖 𝑗 , and W𝑠

1,W
𝑠
2 are trainable parameters. In this

way, the semantic knowledge of the medical KG is abstracted into
H𝑠 .

Next, we describe how to represent queries in terms of H𝑠 . For
each query, we conduct entity linking to identify the entities exist-
ing in the query and extract the corresponding entity types recorded
in the medical KG. Formally, we use s𝑠

𝑖
to record the existence of

each entity type 𝑣𝑠
𝑗
in query x𝑖 :

[s𝑠𝑖 ] 𝑗 =
{

1 if 𝑣𝑠
𝑗
appears in x𝑖

0 otherwise
. (3)

Then, we represent a query x𝑖 as a linear combination of node
embeddings obtained in (2) as

e𝑠𝑖 = 𝑐
𝑠H𝑠⊤s𝑠𝑖 , (4)

where 𝑐𝑠 = 1/∥H𝑠⊤s𝑠
𝑖
∥2 is a normalization scalar such that e𝑠

𝑖
has

unit norm, and superscript (·)⊤ denotes the transpose operation. In
this way, e𝑠

𝑖
explains x𝑖 from the perspective of semantic knowledge.

4.3.2 Syntactic Knowledge Encoding. In order to understand those
medical search queries which lack strict syntactic structure and
have grammatical errors, we further manage to encode the syntactic
knowledge into query embeddings. This is achieved by leveraging
POS tags which are commonly used to mark the syntactic role of
each word with respect to the sentence and therefore can help
discriminate ambiguous words. We first use a POS tagger to obtain
the POS tag for each word of short text in S𝑡 , which forms the POS
tag node setV𝑝 . Inspired by recent work [37], we construct the POS
tag graph G𝑝 = {V𝑝 ,A𝑝 } (Figure 3 (c)) based on co-occurrence
statistics calculated by point-wise mutual information (PMI):

[A𝑝 ]𝑖 𝑗 = max(PMI(𝑣𝑝
𝑖
, 𝑣
𝑝

𝑗
), 0) .

In detail, PMI(𝑣𝑝
𝑖
, 𝑣
𝑝

𝑗
) = log(𝑝 (𝑣𝑝

𝑖
, 𝑣
𝑝

𝑗
)/𝑝 (𝑣𝑝

𝑖
)𝑝 (𝑣𝑝

𝑗
)), where 𝑝 (𝑣𝑝

𝑖
)

is the ratio of sliding windows that contain 𝑣𝑝
𝑖
over all the slide

windows in S𝑡 , and 𝑝 (𝑣𝑝𝑖 𝑣
𝑝

𝑗
) is the ratio of sliding windows where

𝑣
𝑝

𝑖
and 𝑣𝑝

𝑗
co-occur among all the sliding windows in S𝑡 . Denote

the feature matrix for all nodes in V𝑝 as H̄𝑝 , where the 𝑖th row
of H̄𝑝 is the feature for 𝑣𝑝

𝑖
∈ V𝑝 which is initialized as a one-hot

vector. Similar to (2), we use a 2-layer GCN to obtain the POS tag
embedding matrix H𝑝 of G𝑝 :

H𝑝 = Ã𝑝 · ReLU(Ã𝑝 H̄𝑝W𝑝

1 )W
𝑝

2 , (5)

where [ReLU(x)]𝑖 = max( [x]𝑖 , 0), Ã𝑝 = D𝑝−
1
2 (I + A𝑝 )D𝑝−

1
2 with

[D𝑝 ]𝑖𝑖 =
∑
𝑗 [A𝑝 ]𝑖 𝑗 , andW𝑝

1 ,W
𝑝

2 are parameters to learn. Similar
to (3), let [s𝑝

𝑖
] 𝑗 = 1 if 𝑣𝑝

𝑗
appears in x𝑖 and 0 otherwise. Then, we

obtain e𝑝
𝑖
which encodes syntactic knowledge in G𝑝 as

e𝑝
𝑖
= 𝑐𝑝H𝑝⊤s𝑝

𝑖
, (6)

where 𝑐𝑝 = 1/∥H𝑝⊤s𝑝
𝑖
∥2 is used to normalize e𝑝

𝑖
to unit norm.

4.3.3 Generic Knowledge Encoding. We already obtain the query
embeddings which encode semantic knowledge from external med-
ical KG and syntactic knowledge from POS tags. However, they do
not model the semantic meaning of words in the medical search
queries. Therefore, we additionally extract query embeddings by
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PLMs introduced in Section 3.1. These PLMs capture generic knowl-
edge by learning from large-scale corpus, and can also encode con-
textual information of each input sequence. Thus, they have become
the standard workhorse for nowadays natural language processing
tasks. We use BERT [9] to extract the query embedding. For each
query x𝑖 , BERT takes “[CLS]x𝑖 [SEP]" as input where [CLS]and
[SEP]are special start and end tokens, and outputs embeddings for
each token. One can either take the token embedding of [CLS]or
the average of all word embeddings as the representation e𝑔

𝑖
for x𝑖 .

We take the latter as e𝑔
𝑖
following the suggestion of Reimers and

Gurevych [33].

4.3.4 Query Embedding. Finally, we set the query embedding e𝑖 as
a combination of e𝑠

𝑖
in (4) which encodes semantic knowledge, e𝑝

𝑖

in (6) which encodes syntactic knowledge, and e𝑔
𝑖
which encodes

generic and contextual knowledge. Specifically, we let

e𝑖 = e𝑠𝑖 ∥ e
𝑝

𝑖
∥ e𝑔

𝑖
, (7)

where ∥ means concatenating vectors along the last dimension.
Here, concatenation is just an example which already obtains good
performance in practice. It can be replaced by a more complex
aggregation function such as weighted average.

4.4 Training and Inference
The co-click query extractor has no learnable parameter. As for
the query encoder, we denote it as 𝑓𝜽 parameterized by 𝜽 . Thus, a
query x𝑖 obtains its query embedding by

e𝑖 = 𝑓𝜽 (x𝑖 ) . (8)

Note that (8) applies to every query in S𝑡 , {C𝑐𝑡 } and Q𝑡 .
Following Snell et al. [34], we first calculate the class prototype

p𝑐 of class 𝑐 as

p𝑐 =
1

|S𝑐𝑡 |
∑︁

x𝑖 ∈S𝑐
𝑡

𝑓𝜽 (x𝑖 ), (9)

where S𝑐𝑡 is a subset of queries in S𝑡 belong to class 𝑐 and |S𝑐𝑡 |
denotes the number of samples in S𝑐𝑡 . Then, we obtain the class
prediction for each query x𝑗 ∈ Q𝑡 . The possibility of x𝑗 ∈ Q𝑡 over
class 𝑐 is estimated as

𝑝 (𝑐 |x𝑗 ) =
exp(−𝑑 (𝑓𝜽 (x𝑗 ), p𝑐 ))∑𝑁

𝑐′=1 exp(−𝑑 (𝑓𝜽 (x𝑗 ), p𝑐′))
, (10)

where 𝑑 (·, ·) is a distance function which is set to squared Eu-
clidean distance in this paper following [34]. The classification loss
ℓclass (Q𝑡 ) on Q𝑡 is calculated as

ℓclass (Q𝑡 ) =
∑︁

(x𝑗 ,𝑦 𝑗 ) ∈Q𝑡

− log𝑝 (𝑦 𝑗 |x𝑗 ) . (11)

To leverage the co-click queries, we further design a regulariza-
tion term based on contrastive learning. As users may click the URL
by accident or find that URL cannot satisfy their needs, taking co-
click queries as labeled queries can bring in noise and consequently
lead to performance drop. Hence, we do not directly assign labels
to those co-click queries in {C𝑐𝑡 }. Instead, we take these {C𝑐𝑡 } as
weak supervision and leverage them by class-aware contrastive
learning. We encourage x𝑖 ∈ S𝑐𝑡 and c𝑖 ∈ C𝑐𝑡 to obtain similar query

embeddings by loss ℓweak (S𝑡 ):

ℓweak (S𝑡 )=
∑︁

(x𝑖 ,𝑦𝑖 ) ∈S𝑡

∑︁
c𝑗 ∈C𝑦𝑖

𝑡

−log
exp(𝑓𝜽 (x𝑖 ) · 𝑓𝜽 (c𝑗 )/[)∑

𝑘∈I exp(𝑓𝜽 (x𝑖 ) · 𝑓𝜽 (c𝑘 )/[)
, (12)

where [ is the temperature hyperparameter and I collectively
records the indices of samples in C1

𝑡 ∪ . . . C𝑐𝑡 ∪ · · · ∪ C𝑁𝑡 . Note that
unlike supervised contrastive learning [19], we do not constrain
the similarity between x𝑖 , x𝑗 ∈ S𝑐𝑡 . This is because each class only
contains 𝐾 labeled exemplars, forcing them to obtain similar query
embeddings can easily lead to overfit.

The complete loss for T𝑡 is defined as

𝐿 = ℓweak (S𝑡 ) + 𝛽ℓclass (Q𝑡 ), (13)

where 𝛽 is a hyperparameter. The episodic training procedure of
MEDIC is shown in Algorithm 1.

Algorithm 1 Training procedure for MEDIC.
Input: Training data from 𝑁train classes, G𝑚 (medical KG schema),

G𝑝 (POS tag graph), 𝑁 (number of classes per task), 𝐾 (number
of labeled exemplars per class), 𝑇 (number of episodes), [ and
𝛽 (hyperparameters for (12) and (13));

1: randomly initialize model parameter 𝜽 of MEDIC;
2: for 𝑡 = 1, . . . ,𝑇 do
3: randomly sample 𝑁 classes from 𝑁train intent classes;
4: randomly sample𝐾 and𝑀 queries from each of the𝑁 classes

to form support set S𝑡 and query set Q𝑡 respectively;
5: extract co-click queries {C𝑐𝑡 }𝑁𝑐=1 as (1) for queries in S𝑡 ;
6: obtain query embedding as (7) for all queries in S𝑡 ,Q𝑡 and

associated {C𝑐𝑡 }𝑁𝑐=1;
7: predict the classes of each x𝑗 ∈ Q𝑡 by (10);
8: optimize 𝜽 with respect to loss (13) by gradient descent;
9: end for
10: return optimized 𝜽 .

For inference, the learned MEDIC parameterized by 𝜽 is directly
applied for new tasks containing a few labeled queries from 𝑁test
classes that are unseen during training. For each new task T̂ , a
support set Ŝ and a query set Q̂ are provided. We then take the
following steps: (i) use the co-click query extractor to extract the
co-click queries for each query in Ŝ; (ii) feed queries in support
set Ŝ, associated co-click query sets {Ĉ𝑐 } and query set Q̂ to the
same query encoder to obtain the query embeddings; (iii) calculate
class prototypes for each of the 𝑁test classes; and (iv) obtain the
class prediction by (10). Note that 𝜽 is not optimized during infer-
ence. Therefore, a good performance on new tasks reveals a high
generalizability of the model.

5 EXPERIMENTS
In this section, we evaluate the proposed MEDIC4 on our real med-
ical search query dataset (Section 2). We take five classes which
contain a few samples as testing classes, including Healthcare, No
Effect, Form, Drug-Action, Company. The rest classes are used
for training. In addition, we create validation classes by randomly

4Codes are available at https://github.com/tata1661/MEDIC-SIGIR22.
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Table 3: ACC (%) obtained on 5-way few-shot medical search query intent recognition tasks. The best results (according to the
pairwise t-test with 95% confidence) are highlighted in bold.

Class Siamese R2D2 DisSig BERT BERT CNN LSTM TL- Hype- NNID MEDIC
(# testing samples) Network avg CLS GNN GAT (Proposed)

1-shot

Healthcare(48) 38.04 39.90 40.11 55.21 53.82 42.99 43.25 43.79 47.23 52.43 63.77
No Effect (63) 69.58 68.44 71.50 74.61 73.29 67.04 69.27 57.13 63.40 70.29 79.44
Form (76) 48.49 48.02 49.33 73.93 72.20 49.03 50.73 43.90 48.78 70.06 82.25
Drug-Action (103) 45.45 41.36 47.88 56.45 54.57 44.39 46.82 51.22 57.27 68.81 74.30
Company (137) 51.06 65.96 67.34 68.30 67.47 51.49 53.62 51.28 54.89 71.37 82.98
Macro Avg. 50.52 52.74 55.23 65.70 64.27 50.99 52.74 49.46 54.31 66.19 75.61
Micro Avg. 50.52 54.27 56.99 65.90 64.52 50.68 52.61 49.97 54.77 67.59 76.57

5-shot

Healthcare (28) 45.03 45.68 46.97 60.34 58.57 47.83 49.29 48.17 52.44 61.26 70.06
No Effect (43) 72.89 73.72 74.06 74.22 73.41 72.56 72.85 62.74 68.18 74.10 83.58
Form (56) 62.49 60.78 64.47 76.79 76.68 62.68 61.08 55.68 59.97 76.77 89.19
Drug-Action (83) 50.50 51.39 52.32 59.95 59.05 51.92 50.87 57.22 60.45 73.68 85.27
Company (117) 57.44 68.12 74.42 72.09 71.05 56.74 57.42 58.44 60.56 78.11 86.74
Macro Avg. 57.67 59.94 62.45 68.68 67.75 58.35 58.30 56.45 60.32 72.78 82.97
Micro Avg. 57.51 61.43 64.71 69.09 68.21 57.85 57.72 57.34 60.74 74.79 84.94

sampling five classes from the training classes. Once the hyperpa-
rameters are chosen, we put the validation classes back and train
the final model using all nine training classes. All results are av-
eraged over five runs and are obtained on a 32GB NVIDIA Tesla
V100 GPU.

5.1 Baselines
We compare MEDIC with the following methods.

• Siamese Network [23]: a classic few-shot learning model
which uses dual networks to identify whether a pair of sam-
ples comes from the same class.

• R2D25 [3]: an efficient meta-learning model with closed-
form solvers based on ridge regression.

• DisSig6 [2]: a recent few-shot text classification method
which leverages the distributional signatures which encodes
word co-occurrence patterns to represent texts.

• BERT 7 [9]: a BERT fine-tuned with a linear classifier where
a query is represented as the averaged word embeddings
(BERT avg) or the CLS token embedding (BERT CLS).

• CNN [20]: a CNN designed to handle texts.
• LSTM [26]: a LSTM for text classification.
• TLGNN 8 [17]: a GNN which operates on document-level
graphs where each document is modeled as a graph of word
nodes and the word nodes are connected by globally learned
edges. The texts are then classified by graph classification.

5https://github.com/bertinetto/r2d2
6https://github.com/YujiaBao/Distributional-Signatures
7https://huggingface.co/bert-base-chinese
8https://github.com/LindgeW/TextLevelGNN

• HyperGAT 9 [10]: a hypergraph attention networks which
operates on document-level hypergraphs such that higher-
order interaction between words can be modeled.

• NNID [42]: the neural networks based intention detection
model designed for medical search queries. It replaces words
of original search queries by frequently occurring words of
the dataset to augment labeled samples.

Among these methods, BERT, CNN, LSTM, TLGNN, HyperGAT
and NNID are not invented for few-shot setting. Hence, we modify
them to be trained on training tasks and fine-tuned on testing tasks.
We implement Siamese Network, CNN, LSTM and NNID on our
own due to the lack of public codes from the respective authors.

5.1.1 Experimental Settings. For all methods, we find hyperparam-
eters using the validation set via grid search. For MEDIC, we set
[ in (12) as 0.05 and 𝛽 in (13) as 0.4. We set the embedding size of
all GCN layers used in MEDIC as 200. We train the model for a
maximum number of 1000 episodes using Adam [21] with learning
rate 10−3. We early stop training if the validation loss does not
decrease for 10 consecutive episodes. Dropout rate is set as 0.5.

5.1.2 Evaluation Metrics. Following [2], we evaluate the classifica-
tion performance by test accuracy (ACC) computed on all query
sets of testing tasks. As each test class contains varying number
of queries, we report class-wise ACC, macro-averaged ACC which
takes the average of class-wise ACCs, and micro-averaged ACC
which is averaged over all testing samples.

9https://github.com/kaize0409/HyperGAT
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5.2 Performance Comparison
Table 3 shows the results. As can be seen, MEDIC performs the best
in all classes with varying sizes. The fine-tuned BERT itself car-
ries generic knowledge which can be helpful to understand search
queries. However, it still performs worse than MEDIC on this fine-
grained medical search query intent recognition tasks. As for exist-
ing few-shot methods including Siamese Network, R2D2 and DisSig
can perform well on benchmark text classification datasets, they
cannot handle well the short, noisy queries which lack semantic
and syntactic information. This is also the reason why text classifi-
cation methods including CNN, LSTM, TLGNN and HyperGAT fail.
NNID is designed for the medical search query intent recognition
task, which also enlarges the number of labeled queries. Unlike
our method, NNID replaces words of original search queries by
frequently occurring words in the same context. However, this
does not guarantee the resultant queries convey the same intent,
which makes it infeasible to handle intent classes with a few labeled
samples. This reveals the necessity of designing appropriate query
augmentation strategies.

5.3 Ablation Study
We compare MEDIC with the following variants:

• w/o KG, w/o POS, w/o BERT: they separately remove one
query embedding e𝜏

𝑖
from 𝜏 ∈ {𝑚, 𝑝,𝑔} at a time;

• w/o ℓweak: it removes ℓweak in (13);
• w/ CL: it replaces ℓweak (12) by the classic contrastive learn-
ing loss [30], which pulls two co-click queries of the same
(x𝑖 , 𝑦𝑖 ) to be closer and pushes apart the others;

• w/ SCL: it replaces ℓweak (12) by the supervised contrastive
learning loss [30], which encourages query embeddings of
queries in S𝑐𝑡 and C𝑐𝑡 all to be similar;

• LabelAug: it directly takes the co-click queries as labeled
data to be added to support set.

These variants are designed to cover all components of training
MEDIC without overlapping functionalities.

Figure 4 shows the results. As can be seen, BERT provides a
good starting point with the encoding of generic knowledge. Upon
it, the knowledge encoding of medical KG schema and POS tag
graph further bring in extra semantic and syntactic knowledge
into the query embeddings, which increase the performance. Using
co-click queries consistently improves the performance. Recall our
ℓweak only enforces similarity constraint between (x𝑖 , 𝑦𝑖 ) ∈ S𝑐𝑡
and c𝑗 ∈ C𝑐𝑡 . The performance gain of MEDIC with respect to w/
CL, w/ SCL and LabelAug validates that the design of ℓweak can
better leverage the co-click queries. In summary, none of the design
considerations of MEDIC is dispensable.

5.4 Sensitivity Analysis
Here, we examine the effect of varying [ in (12) and 𝛽 in (13) on
the performance.

Figure 5 shows the results. As shown,[ affects themacro-averaged
ACC more than micro-averaged ACC and obtains the best perfor-
mance at [ = 0.05. The existence of ℓ increases the performance
where 𝛽 = 0.4 obtains the best performance. However, a large 𝛽
may make the model be overly dependent on the quality of co-click
queries and got slightly worse performance.

w/o KG w/o POS w/o BERT w/o `weak w/ CL w/ SCL LabelAug MEDIC
65

70

75

80

85

90

A
C

C
(%

)

Micro Avg.

Macro Avg.

Figure 4: Ablation study on 5-way 5-shot tasks.

5.5 Effect of Varying the Number of Queries
We further study the effect of varying the number of (a) labeled
exemplar shots (𝐾) in both training and testing tasks, (b) labeled
exemplar shots (𝐾) in testing tasks, and (c) co-click queries per
query in (1).

The results are plotted in Figure 6. Figure 6(a) uses the same
number of labeled shots 𝐾 in support sets of both training and
testing tasks. While Figure 6(a) trains with 5-way 5-shot tasks, but
varies the number of labeled shots 𝐾 in support sets of testing
tasks. Despite this difference, we observe consistent performance
improvement with more labeled shots. In MEDIC, recall that we
only randomly chosen one co-click query from the user search
query logs. Although a single co-click query per query already can
obtain satisfactory result, we also try varying the number of co-click
queries (𝑄) per query. As can be seen in Figure 6(c), the performance
increases given more co-clicks queries. But the side effect is that the
use of more co-click queries will increase the computational cost of
(12). An interesting direction is learning to select informative co-
click queries among the abundant co-click queries. However, as we
tacklemedical search query intent recognition tasks in a commercial
search engine, heavy computational cost is not practical. How to
design an efficient sampling strategy which does not incur much
more computational cost than random sampling can be explored in
the future.

5.6 Different Query Augmentation Strategies
Finally, we consider various query augmentation strategies to ob-
tain the augmented data ({C𝑐𝑡 }) to be used in our class-aware con-
trastive loss (12). In particular, we test the following strategies
separately: (i) randomly swap and (ii) randomly delete [40]
which randomly swap or delete words of original queries, and (iii)
rewrite [6] which rephrases the query while maintaining a similar
semantic meaning.

Table 5 plots the results. As can be seen, using co-click queries
obtains the best performance, followed by rewrite, and then random
swap and delete. To see why this happened, we provide augmented
query examples for testing classes healthcare, guide and side ef-
fect in Table 4. As can be seen, the co-click queries indeed use
more diverse wording and presentation style while expressing the
same intent. In contrast, the other three strategies basically mod-
ify the original queries, which does not bring in much additional
information. Thus, it is better to use co-click queries.
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Figure 5: Hyperparameter sensitivity analysis of MEDIC on 5-way 5-shot tasks.
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(a) ACC vs number of labled shots in all tasks.

1 3 5 7 9
Number of Shots (K) in Testing Tasks

65

70

75

80

85

90

A
C

C
(%

)

Micro Avg.

Macro Avg.

(b) ACC vs number of labled shots in testing tasks.
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(c) ACC vs number of co-click queries per query.

Figure 6: Varying the number of (a) labeled shots in training tasks, (b) labeled shots in testing tasks, and (c) co-click queries per
query for 5-way tasks. For Figure 6(b), the training tasks are still 5-way 5-shot.

Table 4: Examples of queries augmented using different strategies.

Healthcare Guide Side Effect

Original Query
The effect of Liuwei Dihuang
teapills to males (六味地黄丸对
男性功效)

Eight ciclosporin soft capsules
one day (环孢素软胶囊一
天8粒)

Have a slight fever after eating
norfloxacin capsules (吃完诺氟
沙星胶囊低烧)

Co-click Query
Is Liuwei Dihuang teapills useful
for males (六味地黄丸对男性是
否有用)

Six ciclosporin soft capsules one
day (环孢素软胶囊一天吃6粒)

Eat norfloxacin capsules while
having a fever (发烧喝诺氟沙星
胶囊)

Rewrite
The benefits of Liuwei Dihuang
teapills to males (六味地黄丸对
男性好处)

Eat eight ciclosporin soft
capsules one day (服用环孢素软
胶囊一天8粒)

Have a low fever after eating
norfloxacin capsules (吃完诺氟
沙星胶囊低热)

Random Swap
The benefits of males to Liuwei
Dihuang teapills (男性对六味地
黄丸好处)

Ciclosporin soft one day eight
capsules (环孢素软一天8粒胶
囊)

Eat norfloxacin capsules while
having a low fever (低烧吃完诺
氟沙星胶囊)

Random Delete Liuwei Dihuang teapills to males
(六味地黄丸对男性)

Eightciclosporin soft capsules
(环孢素软胶囊8粒)

After eating norfloxacin capsules
(吃完诺氟沙星胶囊)
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Table 5: ACC(%) obtained byMEDIC using different strategies
to augment queries on 5-way few-shot medical search query
intent recognition tasks.

Class Randomly Randomly Rewrite Co-click
Swap Delete (Proposed)

1-shot

Healthcare 51.22 50.70 54.97 63.77
No Effect 65.81 65.72 68.34 79.44
Form 63.41 65.85 71.61 82.25
Drug-Action 60.54 59.09 67.36 74.30
Company 61.61 60.33 66.28 82.98
Macro Avg. 60.52 60.34 65.71 75.61
Micro Avg. 61.12 60.73 66.52 76.57

5-shot

Healthcare 60.41 60.17 63.22 70.06
No Effect 73.12 70.56 76.77 83.58
Form 73.22 71.38 75.68 89.19
Drug-Action 76.09 72.02 78.25 85.27
Company 70.21 68.49 72.09 86.74
Macro Avg. 70.61 68.52 73.20 82.97
Micro Avg. 71.76 69.44 74.12 84.94

6 CONCLUSION
In this paper, we propose MEDIC to handle medical search query
intent recognition task given a few labeled data. In particular, we
leverage co-click queries which lead users to click the same URL
as weakly supervision information to compensate for the lack of
label information. As the search queries are usually noisy and lack
enough semantic information and strict syntactic information, we
propose a query encoder which simultaneously encodes external
semantic knowledge from a medical KG, syntactic knowledge from
POS tags, and generic knowledge captured from large corpus. Ex-
perimental results on a real medical search query dataset validate
the effectiveness of MEDIC. We believe MEDIC can contribute to
understanding the medical search query intents in an economic, ef-
fective and efficient way, and consequently promoting better online
healthcare services to users all over the world. One can also use the
query embeddings learned by MEDIC to measure query similarity
more accurately and then perform information retrieval. In addition
to retrieval, one can leverage the intent prediction results to analyze
the spatial-temporal trends of a particular disease or side effect of
drugs, which can help detect or monitor public health.
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